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ABSTRACT

A methodology for designing active control laws in a
computational aeroelasticity environment is given.
The methodology involves employing a systems
identification technique to develop an explicit state-
space model for control law design from the output of
a computational aeroelasticity code.  The particular
computational aeroelasticity code employed in this
paper solves the transonic small disturbance
aerodynamic equation using a time-accurate, finite-
difference scheme.  Linear structural dynamics
equations are integrated simultaneously with the
computational fluid dynamics equations to determine
the time responses of the structure.  These structural
responses are employed as the input to a modern
systems identification technique that determines the
Markov parameters of an “equivalent linear system”.  
The Eigensystem Realization Algorithm is then
employed to develop an explicit state-space model of
the equivalent linear system.  The Linear Quadratic
Guassian control law design technique is employed to
design a control law.  The computational aeroelasticity
code is modified to accept control laws and perform
closed-loop simulations.  Flutter control of a
rectangular wing model is chosen to demonstrate the
methodology. Various cases are used to illustrate the
usefulness of the methodology as the nonlinearity of
the aeroelastic system is increased through increased
angle-of-attack changes.

INTRODUCTION

Aeroelasticity is the mutual interaction between
aerodynamics and a flexible body.  Aeroelasticity has
been and continues to be an extremely important
consideration in many aircraft designs1. To address
undesirable aeroelastic effects or phenomena, the
stiffness of the wing is often increased, adding weight
to the aircraft and decreasing the overall performance.

The control of aeroelastic response through feedback to
control surfaces, or more recently through feedback to
active materials, is an alternative to “passive control”

through increased stiffness.  Noll2 presents a review of
active control methods, wind-tunnel experiments, and
flight experiences associated with feedback control and
aeroelasticity.  Currently, most aeroelastic analyses are
routinely conducted using linear aerodynamic and linear
structural models.  However, within the last few
decades, a significant increase in advancing methods to
consider nonlinear aeroelasticity, especially nonlinear
aerodynamics in the transonic region, has taken place.
Dowell3 presents an excellent overview of nonlinear
aeroelasticity and major problems where nonlinear
effects should be considered.

With the maturity of CFD codes, their incorporation
into aeroelastic analyses, both static and dynamic, is
beginning to occur, primarily in the research
community.  This relatively new field has been termed
“computational aeroelasticity” and involves coupling
structural elasticity (static and/or dynamic) and
computational fluid dynamics together to perform time
domain analyses, where the aerodynamics are a
nonlinear function of the deformation of the aircraft.
Most of the work in computational aeroelasticity has
employed solutions to either the nonlinear potential
equation or the Euler equation for aerodynamic forces.
Bennett and Edwards4 provide a status of recent
developments in computational aeroelasticity, with an
emphasis on unsteady transonic flow, and results of
some applications.

Computational aeroservoelasticity involves coupling
structural dynamics, computational fluid dynamics, and
active control systems together.  Batina and Yang5

were perhaps the first researchers to examine control of
an aeroelastic system in a computational aeroelasticity
environment for transonic flow.  They conducted
studies with a 2-d airfoil with plunge and pitch
degrees-of-freedom and a 2-d small-disturbance
transonic CFD code.  The effect of a simple constant
gain control law utilizing displacement, velocity, and
acceleration feedback on the time responses was
determined. Comparison with linear theory indicated
that the frequency and damping values were
significantly different for transonic and linear subsonic
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theory results. References 6-10 are other examples of
research in control of aeroelastic systems within a
computational aeroelasticity environment.  Similar to
Batina and Yang, these studies also only involve
varying the gains of simple feedback control laws to
study their effect on the response of the aeroelastic
system. Two-dimensional and three-dimensional
small-disturbance and Euler CFD codes are used in
these studies.  The studies show that feedback control
can be effective in suppressing transonic flutter.

Guillot and Friedman11, 12 employed adaptive control
theory to design control laws using a CFD technique.
A 2-d airfoil model, with a trailing-edge control
surface, was used with an Euler CFD code to perform
the computational aeroelastic solutions.  An adaptive
control law was used because of the assumed nonlinear
behavior of the system in the presence of nonlinear
transonic flow with large shock motions.  The
adaptive control law involved identifying a linear auto-
regressive moving average (ARMA) model and then
determining an optimal full-state control law. At the
end of a learning period, the control law was engaged
and the ARMA model and control law were then
updated at each subsequent time step during the
computational aeroelasticity simulation.  An adaptive
control law was shown to be quite effective in
suppressing transonic flutter with strong shocks.

The objective of this paper is to describe a general
methodology to design control laws in the context of a
computational aeroelasticity environment. The
technical approach involves employing a systems
identification technique to develop an explicit state-
space model for control law design from the output of
a computational aeroelasticity code.  Although there
are many control law design techniques available, the
standard Linear Quadratic Guassian technique is
employed in this paper.  The computational
aeroelasticity code is modified to accept control laws
and perform closed-loop simulations.  Numerical
results for flutter suppression of the Benchmark Active
Control Technology wind-tunnel model are given to
illustrate the approach.

DESCRIPTION OF TECHNICAL
APPROACH

The overall methodology begins with performing a
computational aeroelasticity simulation (uncontrolled)
with prescribed control surface inputs to obtain a set of

corresponding output time histories.  The next step is
to employ a system identification technique, using the
time histories of outputs and inputs from the first
step, to determine an “equivalent linear system” for use
as a control law design model.  Next, design of a
control law can be performed using any control law
design technique.  Finally, the control law is evaluated
in the computational aeroelasticity simulation.  If the
control law performance is not adequate, the control
law can be redesigned and evaluated again until the
desired performance is obtained. A detailed description
of the technical approach is given in Ref. 13.  A brief
overview will be given in this paper.

Computational Aeroelasticity Simulation

Computational aeroelasticity simulation involves
integrating the structural, aerodynamic (CFD), and for
this paper, control equations simultaneously.  This
paper focuses on the transonic case where the
aerodynamic fluid flow equations contain nonlinear
terms. The particular code that is employed is the
CAP-TSD14 code that has been developed at the NASA
Langley Research Center.   The CAP-TSD code is a
finite-difference code which solves the transonic small-
disturbance aerodynamic equation. The primary outputs
of the CAP-TSD code are time histories of the
pressures and the generalized coordinate displacements,
velocities, and accelerations.  It has been used on a
wide variety of configurations for steady and unsteady
pressure distribution calculations and for calculating
transonic flutter characteristics, including nonlinear
limit-cycle instabilities.

The basic equations of motion implemented in CAP-
TSD are;

[ ]{ ˙̇} [ ]{ }̇ [ ]{ } { }M q C q K q F+ + =          (1)

The primary difference between linear aeroelasticity
methods and computational aeroelasticity is in the
computation of the aerodynamic pressure coefficient
Cp

used in computing the generalized aerodynamic

force vector { }F .

The CAP-TSD code is a finite difference code that
solves the general-frequency modified TSD potential
equation. The TSD equation is solved within CAP-
TSD by a time-accurate approximate factorization (AF)
algorithm developed by Batina15. The algorithm
consists of a Newton linearization procedure coupled
with an internal iteration technique.  The CAP-TSD
code is capable of treating configurations with
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multiple lifting surfaces and bodies.  A relatively
simple Cartesian grid is input along with the
coordinates defining the geometry of the configuration
and the corresponding surface slopes. The pressure
coefficient is calculated at each time step and is
employed to calculate the generalized force vector at
each time step.

Equation 1 is rewritten in state-space form as

Ẋ A X B u{ } = [ ]{ } + [ ]{ } (2)

The numerical algorithm, employed in CAP-TSD, for
solving equation 2 is

X X B u un n n n+ −= + −1 13 2φ θ ( ) / (3)
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and ∆T is the integration time step.

Control Design Model Development

Most control law design methods require an explicit
mathematical model of the system to be controlled.
A computational aeroelasticity simulation provides
time histories of the variables of an aeroelastic
system, but does not generate an explicit
mathematical model of the system.  Computational
aeroelasticity simulations are analogous to
performing experimental investigations where the
only direct outputs are time responses.  Therefore, to
employ the various control law design methods that
are available, a control design mathematical model of
a “computational aeroelasticity system” (CAS) must
be developed. System identification techniques are
widely employed for developing a mathematical
model given experimental data.  Therefore, since a
CAS simulation is analogous to performing an
experiment, system identification is a logical choice.
Juang16 provides a description of many of the
advances in system identification for vibration modal
testing and control of space structures.  The
Observer/Kalman filter Identification (OKID)
technique17 was developed primarily for development
of a mathematical model for control law design.  The

OKID technique has been applied to space structures,
such as the Hubble Space Telescope16 and the Shuttle
Remote Manipulator System18, and to the
identification of linear rigid aircraft models19.  Because
the OKID technique was developed primarily for
identifying models for control law design, it is the
technique employed in this paper.

Description of Observer/Kalman Filter
Identification Technique. Given a set of input
and output data, the Observer/Kalman Filter
Identification (OKID) algorithm is shown in Fig. 1.
One of the keys to the OKID algorithm is the
introduction of an observer into the identification
process. The fist step of the process is the
calculation of the observer Markov parameters.  Then
the system Markov parameters are obtained.

Consider a discrete time state-space model of a system
described by a set of first order difference equations of
the form

x k Ax k Bu k

y k Cx k Du k

( ) ˆ ( ) ˆ ( )

( ) ( ) ( )

+ = +
= +
1

          (4)

Solving for the output y k( ) in terms of the previous

inputs, with the assumption that the system is
initially at rest, i.e. x( )0 0= , yields

y k h u k ii
i

k

( ) ( )= −
=
∑

0

          (5)

where the parameters

h D h CA B kk
k

0
1 1 2 3= = =−, ˆ ˆ, , , ,....

are the system Markov parameters, which are also the
system pulse response samples.  To reduce the
number of Markov parameters needed to adequately
model a system, an observer is introduced into the
OKID technique.  Adding and subtracting the term

Ky k( )  to the right hand side of equation (4) yields

x k A KC x k

B KD u k Ky k

y k Cx k Du k

( ) ( ˆ ) ( )

( ˆ ) ( ) ( )

( ) ( ) ( )

+ = + +

+ −
= +

1

        (6)

The matrix K  can be interpreted as an observer gain.
The parameters defined as
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Y k C A KC B KD Kk
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are the Markov parameters of an observer system.

Consider the special case where K is a deadbeat

observer gain such that all eigenvalues of Â KC+
are zero, the observer Markov parameters will become
identically zero after a finite number of terms. For
lightly damped systems, this means that the system
can be described by a reduced number of observer
Markov parameters.  Furthermore, an unstable system
can be represented using this technique.  This is
obviously a major advantage for this research.

After the Markov parameters are computed using a
least squares technique, a state-space model of the
system is developed using the Eigensystem
Realization Algorithm (ERA).  A complete
description for the computation of the Markov
parameters and the ERA is given in Refs. 17 and 20.

Control Des ign. There are many control law
design methods available.  These range from classical
control law design to the LQG method to H∞ robust

control law design methods to nonlinear control law
design methods.  Because of its ease of use, the LQG
design method is employed in this paper.  Basically,
the LQG design process involves minimizing a cost
function of the form

J y Qy u Ru dtT T= +
∞

∫ [ ]
0

        (8)

where y is an output vector (e.g. accelerations, loads)
of the system and u is the control input.  The
resulting control law is u=-Gx where G is the state
feedback gain matrix that minimizes the cost function
and x is the state vector.  Since the states of a system
are generally not all available for feedback, a Kalman
filter is employed to estimate the states.  The
resulting control law is of the form:

˙̂ ˆ

ˆ

x A x L y

u G x

{ } = [ ]{ } + [ ]{ }
{ } = −[ ]{ }

        (9)

where is the estimate of the state vector x
and L is the Kalman filter gain matrix.

RESULTS AND DISCUSSION

The example employed in this paper to demonstrate
the overall control law design methodology is active
flutter suppression for the Benchmark Active
Controls Technology (BACT)21 wind-tunnel model
shown in Fig. 2. The BACT model is a rigid,
rectangular wing with a NACA 0012 airfoil section.
It is equipped with a trailing-edge control surface and
upper and lower surface spoilers that are controlled
independently by hydraulic actuators.  Only the
trailing-edge control surface is employed in this
paper.  For this study, actuator dynamics are ignored.
For the control law designs, an accelerometer located
near the outboard trailing edge is the assumed sensor
employed for feedback.  The wing is mounted to a
device called the Pitch and Plunge Apparatus (PAPA)
which is designed to permit motion in principally
two modes – pitching and vertical translation
(plunge). Therefore, the BACT has structural
dynamic behavior very similar to the classical two
degree-of-freedom problem in aeroelasticity.  The
vibration frequencies, computed from a NASTRAN
model of the BACT, are 3.4 Hz (plunge) and 5.2 Hz
(pitch). Structural damping is assumed to be zero.
There are two CAP-TSD aerodynamic representations
of the BACT wind-tunnel model used in this paper.
The first one, shown in Fig. 3, is a 3-d model where
the CFD grid contains 140 points in the chordwise
direction, 40 points in the spanwise direction, and 92
points in the vertical direction for a total of 515,200
grid points.  The second one is an equivalent 2-d
model where the CFD grid contains 140 points in the
chordwise direction, only 2 points in the spanwise
direction, and 92 points in the vertical direction for a
total of 25,760 grid points.

Although some basic aerodynamic and flutter
calculations will be presented for the 3-d model, the
control law design and evaluation process results will
be demonstrated with the 2-d model.  However, the
exact same process would be applied to the 3-d case.

Basic Aerodynamic and Uncontrolled
Flutter Results

In order to calculate rigid aerodynamic pressures, the
fluid flow equation (TSD potential equation) is
integrated in time by CAP-TSD without coupling the
structural dynamics equations (i.e. no aeroelastic
effects). Figure 4 shows the chordwise pressure

x̂{ }
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distribution at the 60% span location at M=0.77 for 2
degrees angles of attack.  Results from CAP-TSD are
shown with the experimental results of Ref. 21.
Linear CAP-TSD results are also shown. At 2 degrees
angle of attack, a weak shock near the 20% chord has
developed indicative of transonic flow.  At 5 degrees
angle of attack (not shown), the shock moves aft to
approximately the 35% chord and becomes moderately
strong. The CAP-TSD results capture the shock
location and strength reasonably well. Of course, the
linear CAP-TSD results do not indicate a shock and
are not in agreement with the experimental data on
the upper surface forward of the shock.  However,
both the CAP-TSD and linear CAP-TSD results
compare very well with the experimental data aft of
the 40% chord on the upper surface and compare well
along the entire chord for the lower surface.  The
apparent dip in the experimental upper surface
pressures near the leading edge has been attributed to
the transition strip at that location21. These results
provide some degree of confidence in the aerodynamic
predictions of CAP-TSD for angle-of-attack changes.

Figure 5 shows the chordwise pressure distribution at
the 60% span location at M=.77 for trailing-edge
control surface deflections of 2 degrees.  Again,
results from CAP-TSD are shown with the
experimental results of Ref. 21. CAP-TSD slightly
overpredicts the supper surface pressure peak near the
control surface hinge line.  CAP-TSD considerably
(approximately 50%) overpredicts the upper surface
pressure peak for δ=5 degrees (not shown).
Overprediction of control surface forces is typical for
inviscid codes.  Therefore, care should be used in real
applications to account for this overprediction when
using an inviscid code.

For dynamic aeroelastic analyses in a computational
aeroelasticty environment, two steps are employed in
performing the calculations22. In the first step, a
static aeroelastic deformation is calculated to provide
the initial flowfield for the dynamic aeroelastic
solution. The dynamic solution is a perturbation
about a converged static aeroelastic solution for each
Mach number and dynamic pressure of interest.  The
procedure for calculating static aeroelastic solutions is
to allow the structure and aerodynamics to interact
with no initial condition on the modal displacements
and velocities and no external excitation.  A very
large value (0.99) for structural damping is used to
prevent divergence of the solution and to accelerate
convergence. Once a static aeroelastic solution is
computed, the next step is to prescribe either an

initial condition on the modal displacements or
velocities or an external input.  For flutter
calculations, initial conditions on the velocities are
used to begin the dynamic structural integration.
CAP-TSD was run using a value of 1 on both the
dimesionless plunge and pitch modal velocity initial
conditions and then allowed to decay freely. The ERA
system ID method of Ref. 20 was employed to
estimate modal dampings and frequencies at various
values of dynamic pressure.  Figure 6 shows the
dampings as a function of dynamic pressure (M=0.77)
for a Doublet Lattice linear model, the CAP-TSD 3-d
linear model, and CAP-TSD 3-d model.

The CAP-TSD 3-d linear model shows approximately
a 9% greater flutter dynamic pressure than the
Doublet Lattice linear model.  The Doublet Lattice
linear model shows approximately a 3% lower flutter
dynamic pressure than the experimental value.  The
CAP-TSD linear model shows approximately a 6%
greater flutter dynamic pressure than the experimental
value.   The CAP-TSD model shows approximately a
2% greater flutter dynamic pressure than the
experimental value.

CAP-TSD 2-d Results

This section presents uncontrolled flutter results,
initial system identification results, and results
illustrating the sensitivity of the identified system
model. All of the results are for a Mach number of
0.77 and employ the CAP-TSD 2-d model previously
described. All of the CAP-TSD simulation results
were calculated with an integration time increment of
.000173 seconds and 8000 time steps.

Uncontrolled Flutter Results The ERA
system ID method was also employed to estimate
modal dampings and frequencies for the 2-d cases. The
overall character of the damping vs. dynamic pressure
curves (fig. 7) is very similar to the 3-d case.  The
CAP-TSD linear 2-d model shows a flutter dynamic
pressure which is approximately 19% lower than the
corresponding linear 3-d case.  The CAP-TSD 2-d
model shows a flutter dynamic pressure that is
approximately 21% lower than the corresponding
nonlinear 3-d case.  This magnitude of reduction
between 3-d and 2-d is similar to that described in
Ref. 23.

Initial System ID Results In order to perform
a system identification (ID), an appropriate control
surface input signal must be used to excite the system
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modes. After exploring several input signals
(sinusoid sweep and random), an exponential pulse
signal provided a good input signal for identifying an
equivalent linear model of the CAP-TSD outputs.  In
order to test the system ID technique, CAP-TSD was
run in the linear mode for several of the initial results
that will be shown.  A dynamic pressure of 5.75 kPa
was chosen to identify all of the 2-d system ID
models.  This dynamic pressure is between the flutter
dynamic pressure predicted by CAP-TSD (linear) and
the flutter dynamic pressure predicted by CAP-TSD
(nonlinear). The linear system ID models were
identified using the plunge and pitch displacements,
velocities, and accelerations as the measurement
signals.  Figure 8 shows the results from the system
ID procedure in terms of a comparison between the
CAP-TSD outputs (linear) and two system ID model
outputs (using the same exponential pulse input).

A 5-state system ID model was the first one
identified.  This 5-state model matches the CAP-TSD
plunge responses well.  However, it does not match
the CAP-TSD pitch response well during the
exponential pulse time period.  The order of the
system ID model was increased and an 8-state model
was identified.  As can be seen in Fig. 8, the 8-state
system ID model provides a very good representation
of the CAP-TSD results for both the plunge and pitch
responses over the entire time history.  Several
additional system ID models with higher orders were
identified, but no overall improvement (over the 8-
state model) in the ability to match the CAP-TSD
results were seen.  Most of the subsequent results
employ an 8-state system ID model.

In order to assess the sensitivity of the system ID
model to changes in the control input signal, the
system ID model (derived from the exponential pulse
input) was used in a simulation where the control
surface input was a sine wave.  This result employed
the outputs of CAP-TSD run in the nonlinear mode
(including the aerodynamic nonlinear terms).  Both
the outputs used as input to system ID procedure and
the simulation for the sine wave input were for the
nonlinear CAP-TSD mode.  Figure 9 shows results
of the simulation using a 5 Hz and 10Hz sine wave
input in terms of a comparison of the system ID
model with the CAP-TSD output.  Only the plunge
and pitch displacements are shown.  The agreement
between the system ID model and the CAP-TSD
outputs are excellent for the 5 Hz case.   There is
some slight mismatch of the peaks (especially for the
pitch displacement) between the system ID model and

the CAP-TSD outputs for the 10 Hz case.  However,
the overall ability of the system ID model to match
the CAP-TSD outputs for these different inputs is
quite good.

Control Law Design and Evaluations

Five different cases will be presented to illustrate the
design methodology.  All of the cases are for a Mach
number of 0.77 and a dynamic pressure of 5.75 kPa.  
The cases begin with the linear case at 0 degrees angle
of attack and then proceed with nonlinear cases at 0
degrees angle of attack and 0.6 degrees angle of attack.
For each angle of attack, a system-ID model is
developed and the control law designed with the
system ID model for that angle of attack is compared
with the control law for the linear case.  The
comparison is in terms of gain and phase margins,
acceleration time history (using the exponential
control input), and control surface deflection. The
control law designed with the linear model is intended
to represent a control law using the state-of-the-art
methodology.

The primary design goal for all of the control law
designs is to increase the damping of the system
while exhibiting at least 6 dB gain margins and 60
degrees phase margins.  The gain and phase margins
are to account for uncertainty in the model.  In
addition, the control surface displacements, due to the
feedback command, should be less than 1 degree in
order to stay within a somewhat linear range of the
control surface displacement.  In each of the LQG
designs, the weighting on the output and input during
the regulator design and the intensities of the noise
matrices during the Kalman filter design were varied
by trial and error until a design that met the goal was
determined.

Case 1 Case 1 involves developing a system ID
model from the CAP-TSD (in a linear mode) outputs,
designing an LQG control law, and evaluating the
LQG control law using CAP-TSD in the linear mode.
The results of the system ID process were previously
described.

Figure 10 shows a comparison of CAP-TSD linear
and the system ID linear model outputs for the
uncontrolled and controlled (using the LQG control
law) case.  The results using the system ID model and
the CAP-TSD simulation for the controlled case are
almost identical. The controlled case indicates a much
higher degree of damping than the uncontrolled case.



American Institute of Aeronautics and Astronautics
7

A gain margin of 8.52 dB and a phase margin of
76.28 degrees were determined using a Bode plot (not
shown) of the open-loop system (system ID model
and LQG control law).  Figure 10 also shows the
feedback control surface command for Case 1.  The
maximum control surface displacement is
approximately 0.3 degrees and occurs during the
exponential pulse excitation.

Case 2. Case 2 involves evaluating the control
law designed in Case 1 using the CAP-TSD nonlinear
simulation at an angle of attack of 0 degrees.  In order
to calculate stability margins and design a control law
using the results of the CAP-TSD nonlinear
simulation (Case 3), the CAP-TSD (nonlinear)
outputs are used as the input to the system ID
procedure. Figure 11 shows the results from the
system ID procedure in terms of a comparison
between the CAP-TSD (nonlinear) displacement
outputs and the system ID model.  Similar to the
linear case, the system ID model provides a very good
representation of the CAP-TSD outputs.

Figure 12 shows a comparison of CAP-TSD outputs
for the uncontrolled and controlled (using Case 1
control law) case.  The controlled response using the
CAP-TSD nonlinear model is not as highly damped
as the linear model results. A gain margin of –4.75
dB and a phase margin of 31.34 degrees were
determined using a Bode plot (not shown) of the
open-loop system Although stable, the control law
designed using the linear model does not provide
satisfactory stability margins. Figure 12 also shows
the feedback control surface command for Case 2.
Similar to the Case 1, the maximum control surface
displacement is approximately 0.3 degrees and occurs
during the exponential pulse excitation.

Case 3 Case 3 employs the system ID model
derived from the nonlinear CAP-TSD results of Case
2 to design a control law.  After some trial and error
during the LGQ design process, a satisfactory control
law was determined. Figure 13 shows a comparison
of CAP-TSD outputs for the uncontrolled and
controlled case. A gain margin of –10.84 dB and a
phase margin of 64.72 degrees were determined using
a Bode plot (not shown) of the open-loop system.
Figure 13 also shows the feedback control surface
command for Case 3.  Similar to the Cases 1 and 2,
the maximum control surface displacement is
approximately 0.3 degrees and occurs during the

exponential pulse excitation.  The results using this
control law clearly show much better results, in
particular stability margins, than using the control
law designed using the system ID model of the linear
CAP-TSD outputs.

Case 4    Case 4 involves evaluating the control law
designed in Case 1 using the CAP-TSD nonlinear
simulation at an angle of attack of 0.6 degrees.  In
order to evaluate the stability margins and design a
control law for Case 5, the system ID procedure is
applied to the outputs of CAP-TSD at 0.6 degrees
angle of attack.  Obtaining a good system ID model
for this case was a significant challenge because of
the sensitivity of the system ID procedure to a
perceived bias (nonzero value at t=0), sensitivity to
the order of the model,  and sensitivity to the value of
the sampling time.   In order to obtain a good system
ID model, it was necessary to increase the sampling
time by a factor of forty  (decrease the sample rate by
a factor of forty).  When the perceived bias was
removed, the sample rate was decreased and the model
order was 5, a good system ID model was obtained.  
Figure 14 shows the results from the system ID in
terms of a comparison between the CAP-TSD
outputs and the system ID model. Although the
system ID model provides a good representation of
the CAP-TSD results, it is not as good as the 0
degree angle of attack case.

Figure 15 shows a comparison of CAP-TSD outputs
for the uncontrolled and controlled (using Case 1
control law) case.  The controlled system can be seen
to be slightly unstable.  Figure 15 also shows the
feedback control surface command for Case 4.  The
unstable character is clearly seen in the feedback
control surface command.

Case 5 Case 5 employs the system ID model
derived from the nonlinear CAP-TSD outputs at 0.6
degrees angle of attack to design a control law. Figure
16 shows a comparison of CAP-TSD outputs for the
uncontrolled and controlled case.  There is a
significant reduction in the acceleration response with
the controlled case. A gain margin of –9.66 dB and a
phase margin of 64.17 degrees were determined using
a Bode plot (not shown) of the open-loop system.
Figure 16 also shows the feedback control surface
command for Case 5.  Similar to the previous cases,
the maximum control surface displacement is
approximately 0.3 degrees and occurs during the
exponential pulse excitation.  The results using this
control law clearly show much better results, in
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particular stability margins and damping, than using
the control law designed using the system ID model
of the linear CAP-TSD outputs.

CONCLUSIONS

In summary, the objective of this paper was the
development of a general methodology for designing
active control laws in a computational aeroelasticity
environment. The methodology involves using a
modern system identification technique to develop an
equivalent linear model from the nonlinear simulation
results. Standard control law design techniques are
then used to design control laws.  The resulting
control laws are then incorporated into the nonlinear
computational aeroelasticity simulation for
evaluation. Results of a numerical study applying
this methodology to flutter control of the BACT
wind-tunnel model were presented.

The major conclusions of this research are:

1.  Equivalent linear models developed by employing
a system identification technique can represent the
input-output relationship of a computational
aeroelasticity simulation very well.

2. For the BACT model used in this study, the
system ID model represents the input-output
relationship very well until an angle of attack of .6
degrees where the transonic flow conditions cause the
shock on the upper surface to move aft of the 40%
chord. At this point, extreme care was needed to
obtain a good system ID model.

3. A control law designed using a system ID model
developed from a nonlinear simulation can control the
nonlinear model better than a control designed using a
system ID model developed from a linear
computational aeroelasticity simulation.
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Figure 1. Flow Chart for OKID

Figure 2. Photograph of BACT Wind-Tunnel Model
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Figure 3. CAP-TSD Mesh of BACT Model

Figure 4.  Aerodynamic results α=2 degrees, M=0.77.
60% semi-span

Cpu

Figure 5.  Aerodynamic results δ=2 degrees, M=0.77,
60% semi-span

          Figure 6. Dampings as a function of dynamic
pressure, 3-d

         Figure 7. Damping as a function of dynamic
 pressure, 2-d

        Figure 8. System ID results for displacements,
 α=0 degrees
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Figure 9 (b). Comparison of displacement responses
for a 5 Hz sine wave input

Figure 9 (a). Comparison of displacement responses
for a 10 Hz sine wave input

Figure 10.  Case1 controlled results

Figure 11.  Case 2 system ID results for
displacements, α=0 degrees
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Figure 12.  Case 2 controlled results

Figure 14.  Case 4 system ID results for
displacements, α=.6 degrees

Figure 13.  Case 3 controlled results
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Figure 15.  Case 4 controlled results Figure 16.  Case 5 controlled results
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